Improvised Explosive Devices (IEDs) in Iraq and Afghanistan: Effects and Countermeasures

Clay Wilson
Specialist in Technology and National Security
Foreign Affairs, Defense, and Trade Division

Summary

Since October 2001, improvised explosive devices (IEDs, roadside bombs, and suicide car bombs) have been responsible for many of the combat deaths in Iraq and Afghanistan.¹ Vehicle-borne IEDs and car bombs are now used to strike police stations, markets, and mosques, killing local citizens as well as U.S. troops. U.S. forces counter the devices through utilizing intelligence sources, and by disrupting portions of the radio spectrum that insurgents use to trigger IEDs. Insurgents quickly adapt to countermeasures, and new, more sophisticated IEDs are increasingly being used in both Iraq and Afghanistan. Recent trends show a decrease in the number of IED attacks in Iraq since June 2007, but an increase in the number of effective IED attacks in Afghanistan. Department of Defense (DOD) officials have also charged that Iran may be supplying new IED technology to insurgents in Iraq. There is growing concern that IEDs might eventually be used by other insurgents and terrorists worldwide.² This report will be updated as events warrant.

Background

Improvised explosive devices, also known as IEDs, roadside bombs, and suicide car bombs, have caused over 70% of all American combat casualties in Iraq and 50% of

² The suicide attacks on American hotels in Jordan in November 2005 represent the first known case where Iraqis have conducted suicide bombings against the U.S. outside of Iraq. Brent Sadler, Jordan Confirms Al Qaeda Behind Hotel Blasts, CNN, November 12, 2005.
combat casualties in Afghanistan, both killed and wounded.\(^3\) Some observers speculate that much of the munitions for constructing IEDs in Iraq may have come from large Iraqi military ordnance deposits looted by insurgents, or from stockpiles scattered in secret locations throughout that country before the war.\(^4\) In Afghanistan, the IED munitions supply is supported by funds from an expanding opium trade.\(^5\) Afghanistan’s opium crop reportedly grew 59% in 2006, yielding 6,100 tons, or 90% of the world’s supply.\(^6\) In 2007, the opium crop grew by another 34%, and is now the source of 93% of the world’s supply of heroin and morphine.\(^7\)

News sources report that the average number of daily attacks in Iraq has decreased by 42% since June 2007, coincident with the recent surge in the number of U.S. military forces there. In addition, coalition forces in Iraq have discovered significantly more enemy weapons caches, largely due to an increase in the number of tips from Iraqi nationals. However, DOD officials have also stated that in Afghanistan, Taliban fighters have increased both the number and lethality of their IED attacks.\(^8\)

Observers have indicated that the Taliban forces in Afghanistan appear to have learned some IED techniques from the Iraqi insurgents, and some areas of Afghanistan are now reportedly becoming too dangerous for reconstruction efforts there to continue.\(^9\) DOD has found that insurgents build and deploy IEDs by using networks that, for centuries in Afghanistan and Iraq, have formed the sinews of commerce and survival for tribes and factions.\(^10\) A typical IED terrorist cell consists of six to eight people, including a financier, bomb maker, emplacer, triggerman, spotter, and often a cameraman. Videos of exploding U.S. vehicles and dead Americans are distributed via the Internet to win new supporters.

In July 2007, DOD officials reportedly accused four captured Iranians of smuggling explosives and personnel from Iran into Iraq.11 Iran is suspected of supplying Iraq insurgents with training and new IED technology, such as “passive infrared” electronic sensors that are used for triggering roadside bombs. The new sensors are more resistant to electromagnetic countermeasures now employed by U.S. forces. DOD officials also suspect that Iran is supplying Iraq insurgents with a more lethal IED bomb design called an explosively formed projectile (EFP). An EFP is made from a pipe filled with explosives and capped by a specially shaped metal disk. When the explosives detonate, they transform the disk into a jet of molten metal capable of penetrating armor. EFPs reportedly strike with enough power to cause pieces of a targeted vehicle’s heavy armor to turn into shrapnel, making them much more deadly than traditional IED weapons. DOD officials report there were 69 attacks utilizing EFPs in April 2007.12 The same type of EFP device has been used by Shiite organizations in Lebanon, where Hezbollah receives military support from Iran. However, Iranian government officials deny involvement with any transfer of these weapons to Iraq.13

In addition, U.S. intelligence officials have reportedly said that most IED attacks against U.S. forces in Iraq come from Sunni insurgents rather than from the Shia elements most directly backed by Iran.14 Over time, the insurgents in Iraq have adapted to many U.S. countermeasures, and several DOD officials have stated that protective equipment sometimes seems to be less effective after being deployed for only a few months.15

\section*{Countermeasures}

DOD has established the Joint IED Defeat Organization (JIEDDO) to investigate countermeasures along with various national laboratories, the Department of Energy, contractors, and academia. The Marine Counter Improvised Explosive Device Technology Directorate and the Army Electronic Warfare Division also work with the JIEDDO to reduce the IED threat.16 DOD has also sent electronic warfare officers from the Navy and

\begin{itemize}
\item Serial numbers for infrared triggers have been traced to bulk device orders by Iran. Precision manufacturing techniques required to produce EFP bombs indicate that some may have been constructed in Iran. Michael Isikoff and Mark Hosenball, \textit{Terror Watch: Tracking Iran’s Role in Iraq Attacks}, Newsweek, January 24, 2007. Tom Brook, “U.S. blames Iran for new bombs in Iraq,” \textit{USA Today}, January 31, 2007, at [http://www.usatoday.com/news/world/iraq/2007-01-30-ied-iran_x.htm].
\end{itemize}
Air Force into Iraq and Afghanistan to work on counter-IED measures. The
technologies being evaluated include electronic jammers and pre-detectors, radars, X-ray
equipment, robotic explosive ordnance disposal equipment, physical security equipment,
and armor for vehicles and personnel.

In the past year, JIEDDO has funded almost 14,000 jammers for Marine and Army
units, including robots for explosive ordnance disposal teams, Cougar vehicles for route
clearance teams, and Guardian, a man-portable jammer for dismounted operations. The
JIEDDO also uses intelligence sources to assemble and distribute products to military
units daily to support their efforts to destroy the networks that create IEDs.

Some counter-IED technologies include a stoichiometric diagnostic device, which
can decipher chemical signatures of unknown substances through metal or other barriers.
Known as the CarBomb Finder model 3C4, it sends out neutrons that cause any substance
within a container or vehicle to emit back gamma rays that contain unique signatures from
which the chemical formulas are derived. Electronic jamming devices include the IED
Countermeasures Equipment (ICE) and the Warlock, both of which use low-power radio
frequency energy to block the signals of radio controlled explosives detonators, such as
cell phones, satellite phones, and long-range cordless telephones. Other
countermeasures include the Joint IED Neutralizer (JIN) and the Neutralizing Improvised
Explosive Devices with Radio Frequency (NIRF), which produce a high-frequency field
to neutralize IED electronics at a distance. A system now deployed in Iraq, code-named
PING, fits inside a Humvee and sends out electromagnetic waves to penetrate the walls
of buildings to detect IEDs. Other sensors, such as the Laser-Induced Breakdown
Spectroscopy system (LIBS), detect traces of explosives used for IEDs from as far away
as 30 meters.

However, the Radio Frequency (RF) spectrum in the Iraq combat theater is largely
not managed, and counter-IED radio jammers can sometimes lock onto other U.S.

17 Brenda Steele, “Vice Chairman Visits Troops in Afghanistan, Focuses on IED Issues,” Defense
18 Bruce Lieberman, “SDSU professor focuses laser research on finding killer explosives in Iraq,”
SignOnSanDiego.com, December 27, 2005; available at [http://www.signonsandiego.com/
articlelink/sdsufoundation4/sdsufoundation4.html].
19 Steve Grossman, Car Bomb Detector Employs a Revolutionary New Approach, RFD
20 Sgt. Stephen D’Alessio, 2nd Marine Division, Marines schooled in new bomb protection, July
8525705603871f1?OpenDocument].
Christopher Castelli, “General: Ability to Prematurely Detonate Enemy Bombs Badly Needed,”
Inside the Navy, August 22, 2005, at [http://www.insidedefense.com/].
22 Loren B. Thompson, Iraq: Stop the Bombers, Win the War, June 10, 2005, Lexington Institute,
23 Sebastian Sprenger, “U.S., NATO Research Could Help Troops Detect IED Threats from
electronic combat systems because of a lack of coordination of spectrum usage. Also, Unmanned Aerial Vehicles (UAVs) can sometimes lose their radio control links due to ground-based radio interference caused by counter-IED jammers once they are far away from their control base. Therefore, DOD is now developing an “Electronic Warfare Coordination Cell” to help sort out problems that can impede friendly operations, or endanger Explosive Ordnance Teams as they disable IEDs on the ground.

Other counter-IED research involves fusing large amounts of intelligence and surveillance data to monitor when and where bombs are planted. Using such data gathered by Unmanned Aerial Vehicles (UAVs), enemy bomb makers can be targeted before attacks can be launched. Sometimes the data can be played backward to see from where the bombers and vehicles came.

Threat data about IEDs is tightly controlled by DOD to avoid giving feedback to the enemy about the effectiveness or ineffectiveness of different IED designs. Also, proprietary rights must be protected for those companies who produce IED countermeasures. However, these controls may sometimes limit access by other companies to important information about the effectiveness of anti-IED systems as they are tested or used in battle. As a result, some industry officials say they are not getting access to all the information they need to help them create the most effective new solutions to counter IEDs, and suggest that relaxing some of the controls might lead to more solutions. However, the JIEDDO has recognized this issue and is taking steps, including modifying content on its website, to improve access to information at the appropriate clearance levels.

Acquisition and Funding of Countermeasures

Some U.S. Army units in Iraq and Afghanistan reportedly lack the latest Humvee armor kits, and the new deployment of five additional Army brigades has added to that shortage. Humvees can be up-armored through a rebuilding process that adds classified technology called “Frag 5” or “Frag 6,” which are armor kits that are said to offer increased protection against side-penetrating EFPs. However, the weight of extra armor may sometimes hinder the payload and performance of humvees. The Army expects to

28 Personal communication, JIEDDO, August 28, 2007.

begin taking delivery in 2007 of the first wave of blast-proof trucks, called Mine Resistant Ambush Protected (MRAP) vehicles. All Humvees in Iraq are to be replaced by MRAPs, which are better designed to withstand traditional IEDs. However, some DOD officials have reportedly stated that the MRAP may not be able to stop EFPs unless additional armor is added, and that this known vulnerability will cause insurgents to increase their use of EFPs. The Army and Marine Corps are also planning to gradually replace the humvee fleet with the new Joint Light Tactical Vehicle (JLTV), starting in FY2012.

On August 5, 2007, the House passed H.R. 3222, the Department of Defense Appropriations Act of 2008, where $500,000,000 was made available to the Joint IED Defeat Fund, until September 30, 2010. The Joint IED Defeat Fund allows DOD to allocate funds where needed. However, under this legislation, funds allocated for operating and administrative expenses are limited to not more than $110,000,000, and within 60 days of enactment, the Office of the Secretary of Defense (OSD) must submit a plan to the defense committees explaining the intended management and use of the amounts provided.

In September 2007, the Senate Committee on Appropriations recommended $120,000,000 in funding for the JIEDDO, which is $380,000,000 below the budget request of $500,000,000. The committee, in its report, expressed strong concern over the lack of a formalized strategic plan to clarify the roles of JIEDDO within the Department of Defense and the intelligence community. The DOD was required, under PL110-28, to finalize the JIEDDO strategic plan by August 17, 2007, but the Senate committee has not yet received the plan. Partly because an additional $4 billion for JIEDDO is included in the FY2008 Global War On Terror supplemental budget request, the committee has directed DOD to provide the strategic plan by September 30, 2007, so that Congress can properly analyze any additional requirements for JIEDDO.

DOD officials have reportedly said that unless a new supplemental funding bill is passed by congress, the JIEDDO can sustain operations until January 2008, but will have to stop funding new initiatives by December 2007.

31 For more information about MRAP vehicles, see CRS Report RS22707, Mine-Resistant, Ambush-Protected (MRAP) Vehicles: Background and Issues for Congress, by Andrew Feickert.