Energy Efficiency: Budget, Oil Conservation, and Electricity Conservation Issues

Updated January 20, 2006

Fred Sissine
Resources, Science, and Industry
CONTENTS

SUMMARY

MOST RECENT DEVELOPMENTS

BACKGROUND AND ANALYSIS

Energy Efficiency Concept

History

DOE’s Strategic and Performance Goals

Energy Efficiency in the 109th Congress
 Efficiency Standards for Consumer and Commercial Products
 Efficiency Goals for Federal Buildings
 Tax Incentives for Efficiency and Conservation
 Energy Efficiency Tax Revenue Effect
 Housing, Funding Authorizations, and Other Provisions

DOE Budget, FY2006

EPA Budget, FY2006

Energy Security
 Electricity Demand-Side Management (DSM) and Distributed Power
 Energy Conservation to Curb Natural Gas Demand
 Vehicle Fuel Efficiency and Oil Conservation

Climate Change: Energy Efficiency’s Role

Electric Industry Restructuring and Conservation

LEGISLATION

CONGRESSIONAL HEARINGS, REPORTS, AND DOCUMENTS

FOR ADDITIONAL READING
SUMMARY

Energy security, a major driver of federal energy efficiency programs in the past, came back into play as oil and gas prices rose late in the year 2000. The terrorist attack in 2001 and the Iraq war have heightened concern for energy security and raised further concerns about the vulnerability of energy infrastructure and the need for alternative fuels. Further, the 2001 power shortages in California, the 2003 northeast-midwest power blackout, and continuing high natural gas and oil prices have renewed emphasis on energy efficiency and energy conservation to dampen oil, electricity, and natural gas demand.

Also, worldwide emphasis on environmental problems of air and water pollution and global climate change, the related development of clean energy technologies in western Europe and Japan, and technology competitiveness may remain important influences on energy efficiency policymaking.

The Energy and Water appropriations bill for FY2006 (P.L. 109-103, H.R. 2419) provides $1,185.7 million for the Department of Energy’s (DOE’s) Energy Efficiency and Renewable Energy Programs, $468.5 million of which funds five energy efficiency research and development programs (Hydrogen, Fuel Cells, Vehicles, Buildings, and Industries). This amount is $10.4 million (2.2%) less than was appropriated in FY2005. Further, funding committed to congressionally earmarked energy efficiency projects grew by $51.7 million to $85.7 million.

P.L. 109-102 (H.R. 3057) provides $100 million for clean (renewable) energy and energy efficiency programs in developing countries. P.L. 109-97 (H.R. 2744) provides $23 million for farm-based energy efficiency (and renewable energy) grants and loans. H.R. 2862 has telecommuting provisions for federal agencies, and P.L. 109-54 (H.R. 2361) provides $112.5 million for the Environmental Protection Agency’s (EPA’s) Climate Protection Programs.

P.L. 109-58 (H.R. 6) authorizes or reauthorizes several energy efficiency and conservation programs. It also establishes several new commercial and consumer product efficiency standards, sets new goals for energy efficiency in federal facilities and fleets, broadens the Energy Star products program, expands programs for hydrogen fuel cell buses, and extends daylight savings. However, it does not include Senate-proposed provisions for oil conservation or a broader range of legislated standards for equipment efficiency.

Sections 1301 and 1402 of the Deficit Reduction Act (S. 1932/H.R. 4241) would terminate certain energy efficiency (and renewable energy) programs at the Department of Agriculture (USDA).
MOST RECENT DEVELOPMENTS

On January 19, 2006, following a directive in section 1253 of the Energy Policy Act (P.L. 109-58), the Federal Energy Regulatory Commission (FERC) proposed a new rule that would exempt electric utilities in New York and certain states of the Midwest, Mid-Atlantic, and New England regions from cogeneration power purchase requirements that had been established under Section 210 of the Public Utility Regulatory Policies Act.

On January 12, 2006, the Secretary of Energy announced that President Bush will request $52 million in the upcoming FY2007 budget request to support the Asia Pacific Partnership on Clean Development and Climate. Energy efficiency technologies are listed as one of several technologies that will be studied by task forces of the six-member organization, which also includes Australia, China, India, Japan, and South Korea.

The Energy and Water Appropriations bill for FY2006 (P.L. 109-103, H.R. 2419) provides $1,185.7 million for the Department of Energy’s (DOE’s) Energy Efficiency and Renewable Energy (EERE) Programs. (For more details, see the “FY2006 DOE Budget” section and Table 3, below.) For FY2006, the Environmental Protection Agency’s (EPA’s) Climate Protection (energy efficiency) Programs were appropriated $112.5 million, which is $2.6 million higher than the FY2005 level. (For more details, see “EPA Budget, FY2006” and Table 2, below.) Appropriation bills for the Department of Agriculture and for the Department of State also include funding for energy efficiency programs. (For more details, see the “Legislation” section below.)

BACKGROUND AND ANALYSIS

Energy Efficiency Concept

Energy efficiency is increased when an energy conversion device, such as a household appliance, automobile engine, or steam turbine, undergoes a technical change that enables it to provide the same service (lighting, heating, motor drive) while using less energy. The energy-saving result of the efficiency improvement is often called “energy conservation.” The energy efficiency of buildings can be improved through the use of certain materials such as attic insulation, components such as insulated windows, and design aspects such as solar orientation and shade tree landscaping. Further, the energy efficiency of communities and cities can be improved through architectural design, transportation system design, and land use planning. Thus, energy efficiency involves all aspects of energy production, distribution, and end-use.
These ideas of “efficiency” and “conservation” contrast with “curtailment,” which decreases output (e.g., turning down the thermostat) or services (e.g., driving less) to curb energy use. That is, energy curtailment occurs when saving energy causes a reduction in services or sacrifice of comfort. Curtailment is often employed as an emergency measure.

Energy efficiency is often viewed as a resource option like coal, oil, or natural gas. In contrast to supply options, however, the downward pressure on energy prices created by energy efficiency comes from demand reductions instead of increased supply. As a result, energy efficiency can reduce resource use and environmental impacts. (See CRS Report RL31188, *Energy Efficiency and the Rebound Effect*.)

History

From 1974 through 1992, Congress established several complementary programs, primarily at the Department of Energy (DOE), to implement energy saving measures in virtually every sector of societal activity. These energy efficiency and energy conservation programs were created originally in response to national oil import security and economic stability concerns. In the early 1980s, states and utilities took an active role in promoting energy efficiency as a cost-saving “demand-side management” tool for avoiding expensive powerplant construction. Since 1988, national interest in energy efficiency has focused increasingly on energy efficiency as a tool for mitigating environmental problems such as air pollution and global climate change. This aspect spawned new programs at DOE and at several other agencies, including the Environmental Protection Agency (EPA), the Agency for International Development (AID), and the World Bank’s Global Environment Facility (GEF). Energy efficiency is increasingly viewed as a critical element of sustainable development and economic growth.

The DOE energy efficiency program includes R&D funding, grants to state and local governments, and a regulatory framework of appliance efficiency standards and voluntary guidelines for energy-efficient design in buildings. In addition, its budget supports regulatory programs for energy efficiency goals in federal agencies and standards for consumer products. (Detailed descriptions of DOE programs appear in DOE’s *FY2006 Congressional Budget Request*, DOE/ME-0052, vol. 7, February 2005, available at [http://www.cfo.doe.gov/budget/06budget/Start.htm].)

From FY1978 through FY2005, DOE spent about $12.0 billion in 2004 constant dollars for energy efficiency R&D, which amounts to about 15% of the total DOE spending for energy R&D during that period. In 2004 constant (real) dollars, energy efficiency R&D funding declined from $692 million in FY1980 to $223 million in FY1988 and then climbed to $652 million in FY2001. For FY2005, $584 million was appropriated, which was $12.8 million, or 2%, less than the FY2004 mark in 2004 constant dollars. Also, in 2004 constant dollars, since FY1978, DOE has spent about $8.2 billion on grants for state and local conservation programs.

This spending history can be viewed within the context of DOE spending for the three major energy supply R&D programs: nuclear, fossil, and renewable energy R&D. From FY1948 through FY1977, in 2004 constant dollars, the federal government spent about $41.2 billion for nuclear (fission and fusion) R&D and about $13.7 billion for fossil energy R&D.
From FY1978 through FY2005, the federal government spent $32.8 billion for nuclear (fission and fusion), $20.4 billion for fossil, $13.0 billion for renewables, and $12.0 billion for energy efficiency. Total energy R&D spending from FY1948 to FY2005, in 2004 constant dollars, reached $135.4 billion, including $74.0 billion, or 55%, for nuclear, $34.1 billion, or 25%, for fossil, $13.0 billion, or 10%, for renewables, and $12.0 billion, or 9%, for energy efficiency.

Under the FY2005 budget structure (in current 2005 dollars) for EERE, DOE’s energy efficiency R&D funding totaled $595.9 million, or about 25% of DOE’s energy R&D appropriation. Renewable energy R&D received $380.3 million (16%), fossil energy received $539.6 million (22%), and fission and fusion were appropriated $784.1 million (32%).

Since 1985, national energy use has climbed about 20 Q (quads — quadrillion Btus, British thermal units), reaching a record high of 99.7 Q in 2004. DOE’s 1995 report Energy Conservation Trends found that energy efficiency and conservation activities from 1973 through 1991 curbed the pre-1973 growth trend in annual primary energy use by about 18 Q, an 18% reduction. In 1992, this was saving the economy about $150 billion annually in total U.S. energy expenditures, a one-fourth reduction from the previous trend.

DOE’s Strategic and Performance Goals

In 2004, a National Academy of Public Administration (NAPA) study found dramatic improvement in the Office of Energy Efficiency and Renewable Energy (EERE) after a major reorganization that included new offices for FreedomCAR and Vehicle Technologies and for Hydrogen, Fuel Cells, and Infrastructure. Information about the new management structure and other aspects of EERE are available on the DOE website at [http://www.eere.energy.gov/office_eere/]. The study is available on the NAPA website at [http://www.napawash.org/Pubs/EERE%20NAPA%20Rpt%20Sept%2004.htm].

A National Research Council report, Energy Research at DOE: Was it Worth It?, found that from 1978 to 2000 an investment of about $8 billion in DOE’s Energy Efficiency Programs produced an economic return of at least $30 billion. Areas found short of expected benefits lacked incentives needed for private-sector adoption.

The President’s Management Agenda set out the Bush Administration’s framework for performance management based on human capital, competitive sourcing, financial performance, electronic government, and integration of budget with performance. The Government Performance and Results Act (GPRA, P.L. 103-62) requires each federal agency to produce and update a strategic plan linked to annual performance plans.
In the DOE Budget Request for FY2006, energy efficiency is addressed under the strategic goal “to protect national and economic security” and within General Goal 4, which seeks to “[i]mprove energy security” through a variety of energy supply measures and by “improving energy efficiency.” In support of DOE General Goals, the request lists 10 Program Goals (PGs) under Energy Conservation, from which selected PGs follow. PG 4.01 says the Hydrogen/Fuel Cell Technologies Program will achieve certain cost and performance goals. PG 4.02 aims to increase the efficiency of cars and trucks to “reduce energy use and greenhouse gas emissions.” PG 4.04 says that the Buildings Program will become “capable of generating as much energy as they consume.” PG 4.06 says that the Industrial Technologies Program will reduce energy intensity and improve economic competitiveness. PG 4.13 says that relative to the 1985 baseline, DOE’s Federal Energy Management Program (FEMP) will support federal agency efforts to reduce energy intensity by 35% by 2010. Further, DOE notes that from 2001 through 2004, EERE was awarded 33 R&D 100 awards. DOE projects that the EERE programs will curb energy demand growth by 12 Q per year in 2025 and by 30 Q in 2050, which would represent more than half of the otherwise expected growth by 2050.

Energy Efficiency in the 109th Congress

Efficiency Standards for Consumer and Commercial Products

DOE currently sets minimum energy efficiency standards for several consumer and commercial products, including household appliances such as clothes washers and refrigerators. P.L. 109-58 (§135 and §136) sets a variety of energy efficiency standards for consumer appliances and commercial equipment. As the table below shows, most of the standards are set by law, but some are at the discretion of a DOE rulemaking. The American Council for an Energy-Efficient Economy (ACEEE) estimates that these new standards will save more energy than any other efficiency provisions in the bill. Further, §141 requires that DOE report regularly to Congress when efficiency standard rulemakings are behind schedule, including steps being taken to get back on schedule. The table below indicates which standards would be set by law and which would be set by DOE rulemaking.

<table>
<thead>
<tr>
<th>Standard set:</th>
<th>H.R. 6 (Conference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>By law (16 products)</td>
<td>exit signs, traffic signals, building transformers, torchiere lighting fixtures, compact fluorescent lamps, commercial unit heaters, residential dehumidifiers, commercial refrigerators and freezers, large commercial air conditioners, commercial ice makers, commercial clothes washers, pedestrian crossing signals, mercury vapor lamp ballasts, fluorescent lamp ballasts, pre-rinse spray valves (used in restaurants), and residential ceiling fan light kits.</td>
</tr>
<tr>
<td>By rule (3 products)</td>
<td>external power supplies, battery chargers, refrigerated beverage vending machines</td>
</tr>
</tbody>
</table>
Efficiency Goals for Federal Buildings

The purpose of federal efficiency goals is to lead by example in saving energy, reducing costs, and helping transform markets for new equipment. The past goal had called for a 20% reduction in federal buildings’ energy use, measured in energy use per square foot (sf), from 1985 to 2000. This goal was exceeded, slightly. P.L. 109-58 (§102) sets a goal for further energy efficiency in federal facilities. Compared to the baseline year energy use in 2003, the goal is a 20% energy reduction over a 10-year period from 2006 to 2015. Also, DOE is required to review results by the end of the 10-year period and recommend further goals for an additional decade. Most of the other provisions for federal programs are administrative measures that would help agencies achieve the above-described goal.

The historical record shows that congressional buildings have had less focus on energy efficiency goals than those in the executive branch. To address this, P.L. 109-58 (§101) calls for the implementation of a plan for congressional buildings to meet the energy efficiency goal for federal agencies noted above. It also calls for a study of the potential for energy efficiency and renewables to increase reliability during a power outage.

Tax Incentives for Efficiency and Conservation

Since the late 1970s, there have been some tax incentives to promote fuel switching and alternative fuels as a way to conserve gasoline and reduce oil import dependence. In contrast, tax incentives for energy efficiency and for electricity conservation have been rare and generally short-lived. P.L. 109-58 includes new tax credits for energy efficiency. In commercial property, new home construction, existing home improvements, appliances, residential fuel cells, and business fuel cells.

Energy Efficiency Tax Revenue Effect. Table 1, below, compares the estimated 10-year revenue effect of energy efficiency and conservation tax provisions in the House, Senate, and Conference versions of H.R. 6.

<table>
<thead>
<tr>
<th>Table 1. H.R. 6, Tax Revenue Effect</th>
<th>House</th>
<th>Senate</th>
<th>Conference (P.L. 109-58)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Efficiency and Conservation Measures ($§1312 and §1317 in House bill, excluding diesel fuels, alternative fuels, and solar credit)</td>
<td>$0.397</td>
<td>$3.733</td>
<td>$1.260</td>
</tr>
<tr>
<td>Hybrid and Fuel Cell Vehicles</td>
<td>——</td>
<td>$1.686</td>
<td>——</td>
</tr>
<tr>
<td>Total, Energy Efficiency and Conservation</td>
<td>$0.397</td>
<td>$5.419</td>
<td>$1.260</td>
</tr>
<tr>
<td>Gross Total, All Tax Provisions</td>
<td>$8.090</td>
<td>$18.421</td>
<td>$14.553</td>
</tr>
<tr>
<td>Energy Efficiency and Conservation Share of Total</td>
<td>4.9%</td>
<td>29.4%</td>
<td>8.7%</td>
</tr>
</tbody>
</table>

Source: Joint Committee on Taxation (JCT), Estimated Budget Effects of the Conference Agreement for Title XIII of H.R. 6, July 27, 2005 (JCX-59-05); Estimated Revenue Effects of the Chairman’s Amendment in the Nature of a Substitute to H.R. 1541, Scheduled for Markup by the Committee on Ways and Means, April 13, 2005 (JCX-17-05); Estimated Revenue Effects of the Chairman’s Amendment in the Nature of a Substitute to the “Energy Policy Tax Incentives Act of 2005,” Scheduled for Markup by the Committee on Finance, June 16, 2005 (J CX-47-05).
Housing, Funding Authorizations, and Other Provisions

P.L. 109-58 has several provisions (§ 151-154) for energy efficiency in public housing. Also, Section 121 authorizes funding for energy assistance (e.g., Low-Income Home Energy Assistance Program, LIHEAP), and Sections 122 and 123 authorize grant programs (e.g., DOE Weatherization Program and State Energy Program). Several other energy efficiency programs are authorized in Title I and Title IX.

DOE Budget, FY2006

For the FY2006 R&D programs (Hydrogen, Fuel Cells, Vehicles, Buildings, Industry), the law provides $468.5 million, which is $10.4 million less than the FY2005 appropriation. The FY2006 appropriation provides $17.0 million more for Vehicle Technologies and $2.8 million more for Building Technology; but it provides $17.9 million less for Industrial Programs and $13.5 million less for Hydrogen. Further, there is a net of $6.4 million less for Intergovernmental Programs (including $15.3 million more for Weatherization, $8.2 million less for State Energy, and $9.3 million less for Gateway Deployment). EERE program spending committed to congressionally earmarked projects grew to $165.6 million, nearly double that for FY2005. This amount includes $85.7 million in earmarks for energy efficiency programs, an increase of $52.7 million. More than half ($43.0 million of $81.1 million) of the Hydrogen funding was earmarked. Also, the Distributed Energy Resources program was transferred to the Office of Electricity Delivery and Energy Reliability (OE).

Also, for FY2006, Congress adopted a new appropriations structure that merged EERE funding for renewable energy from the Energy and Water Development bill with funding for energy efficiency from the Department of Interior and Related Agencies bill. The unified account structure (now under the Energy and Water Development bill) no longer reports separate funding amounts for energy efficiency and renewable energy programs.

For further information on the Energy Conservation Budget, see [http://www.cfo.doe.gov/budget/06budget/Start.htm]. For further information on Energy Conservation Programs, see [http://www.eere.energy.gov/].

EPA Budget, FY2006

The FY2006 appropriation for EPA’s Climate Protection Programs (CPPs) is $112.5 million, which is $2.6 million more than FY2005 appropriation. This includes $2.6 million more under the Office of Environmental Programs and Management (EPM) and no change under the Office of Science and Technology (S&T).

EPA conducts its CPP programs under the Office of Atmospheric Programs, with funding from appropriation accounts for EPM and S&T. EPM programs cover the areas of buildings, industry, state and local government, international, and sequestration. S&T programs mainly cover transportation. CPP programs focus mainly on voluntary energy efficiency activities. These programs include Green Lights, Energy Star Buildings, Energy Star Products, Climate Wise, and Transportation Partners. They involve public-private
partnerships that promote energy-efficient lighting, buildings, and office equipment. Efforts also include labeling, information dissemination, and other activities to overcome market barriers.

Table 2. EPA Funding for Climate Protection Energy Efficiency Programs (CPP)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Environ. Programs &</td>
<td>88.5</td>
<td>90.9</td>
<td>95.5</td>
<td>91.5</td>
<td>94.5</td>
<td>93.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science & Technology</td>
<td>21.8</td>
<td>19.0</td>
<td>17.7</td>
<td>20.0</td>
<td>17.7</td>
<td>19.0</td>
<td>0.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>110.3</td>
<td>109.9</td>
<td>113.2</td>
<td>111.5</td>
<td>112.2</td>
<td>112.5</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Energy Security

The September 11, 2001, terrorist attacks focused national attention on developing a strategy to address the vulnerabilities of energy systems and other essential services. The Department of Homeland Security (DHS, P.L. 107-296) includes offices and programs (Infrastructure Protection, Energy Security and Assurance) responsible for measures to protect energy infrastructure, including power plants, transmission lines, oil refineries, oil storage tanks, oil and natural gas pipelines, and other energy infrastructure. By reducing the demand for fuels and electricity, energy efficiency measures may contribute to energy security by slowing growth in the number of energy facilities and amount of other energy infrastructure. It can also reduce the risk of oil shortages, energy price shocks, and attendant impacts on the national economy. Some of the possible ways that energy efficiency can improve energy security are described in DOE’s report *Homeland Security: Safeguarding America’s Future with Energy Efficiency and Renewable Energy Technologies* and in *U.S. Energy Security Facts* (available at [http://www.rmi.org/images/other/EnergySecurity/S03-04_USESFtext.pdf]).

Electricity Demand-Side Management (DSM) and Distributed Power

The August 2003 electric power blackout that affected several states and Canadian provinces rekindled interest in energy efficiency, energy conservation/demand response measures, and distributed power generation. The use of energy-efficient appliances and other end-use equipment can reduce electricity demand, which drives the need for new power plants. Further, the development of small, modular “distributed energy” systems (also referred to as distributed generation and distributed power) under DOE’s program may help reduce the security risk by decentralizing energy facilities and establishing some facilities off-grid. Also, the “response and recovery” element in the President’s DHS proposal called for it to “ensure rapid restoration of transportation systems, energy production, transmission, and distribution systems....” The deployment of smaller, highly mobile distributed energy
Energy Conservation to Curb Natural Gas Demand

The Secretary of Energy requested that the National Petroleum Council (NPC) report on policy options to address the problem of high natural gas prices. The report, *Balancing Natural Gas Policy*, says gas prices could average from $5 to $7 per thousand cubic feet for years to come, and it concludes, among other options, that energy conservation and greater energy efficiency have the biggest immediate potential to hold down prices. The report recommends updating building codes and equipment standards, promoting Energy Star equipment, using the most efficient power plants, deploying distributed energy, installing smart controls, and employing best practices for low-income weatherization. The Alliance to Save Energy and the American Council for an Energy-Efficient Economy (ACEEE) applaud the NPC recommendations but stress that many other measures — including tax incentives, utility performance standards, federal buildings improvements, and regulations to make energy conservation profitable for utilities — were not in the report and should be considered. Also, a 2005 report by ACEEE, *Impacts of Energy Efficiency and Renewable Energy on Natural Gas Markets: Updated and Expanded Analysis*, says that in one year, a massive energy efficiency effort could be put in place that would reduce gas use by 1% and cut prices by 37%. (The NPC report is at [http://www.npc.org/] and the ACEEE report is at [http://www.aceee.org/press/0504eerespond.htm].)

Vehicle Fuel Efficiency and Oil Conservation

Energy efficiency measures to curb oil demand, and other oil conservation measures, may help address energy security, economic issues such as high gasoline prices and oil import dependence, and environmental issues such as air pollution, climate change, and the proposal to develop oil in the Arctic National Wildlife Refuge (ANWR).

For the ANWR issue, technology-driven improvements to the fuel economy of cars and light trucks — without any change to the Corporate Average Fuel Economy (CAFE) standard — might save more fuel than would likely be produced by oil drilling in ANWR, although the two options are not mutually exclusive. The Energy Information Administration (EIA) says that a technology-driven projection for cars and light trucks could increase fuel economy by 3.6 mpg by 2020. Through the first 20 years, this increase would generate oil savings equivalent to four times the low case and three-fourths of the high case projected for ANWR oil production. Extended through 50 years, the fuel economy savings would range from 10 times the low case to more than double the high case for ANWR. (For more information on
this issue, see CRS Report RL31033, *Energy Efficiency and Renewable Energy Fuel Equivalents to Potential Oil Production from the Arctic National Wildlife Refuge*).

CAFE is a key federal regulatory policy that had instituted a gradual ramp-up of fuel efficiency for newly manufactured cars and light trucks. The present CAFE standard for new cars is 27.5 mpg. The national fleet fuel economy for cars peaked at 21.1 mpg in 1991, declined slightly, and then climbed to 22.4 mpg in 2004. Light trucks have experienced greater variability, with a recent peak in 2001 at 17.6 and a decline to 16.2 mpg in 2004. Section 774 of P.L. 109-58 requires EPA to revise its adjustment factors to increase the accuracy of fuel economy labels. In action on H.R. 6 (P.L. 109-58), the Senate version included a provision to save 1 million barrels of oil per day by 2010, but the provision did not survive conference. (For more on CAFE standards, see CRS Issue Brief IB90122, *Automobile and Light Truck Fuel Economy: The CAFE Standards*, by Robert Bamberger.)

A report by the Congressional Budget Office (CBO), *The Economic Costs of Fuel Economy Standards Versus a Gasoline Tax*, found that a 46-cent-per-gallon gasoline tax increase would achieve a 10% reduction in fuel use at a cost that is 3% less than the cost of creating a higher CAFE standard with or without credit trading.

The Bush Administration’s hydrogen fuel initiative seeks to accelerate the use of fuel cells for transportation and power generation. Fuel cells can reduce gasoline (hence oil) use due to the ability to employ hydrogen-rich fuels, such as natural gas and alcohol fuels. The initiative builds on the Administration’s Freedom Cooperative Automobile Research (FreedomCAR) Program. FreedomCAR creates a partnership with the auto industry to develop a fuel-cell-powered vehicle that would attain commercial use during 2010 to 2020. This program is funded primarily by DOE’s Fuel Cell Technologies Program (see Table 3) but includes some funding from other agencies. (For more details on FreedomCAR see CRS Report RS21442, *Hydrogen and Fuel Cell Vehicle R&D: FreedomCAR and the President’s Hydrogen Fuel Initiative*.)

Oil use for gasoline, home heating, and other applications makes it important to the transportation and production sectors of the nation’s economy. Thus, fluctuating oil prices and dependence on imported sources can create economic vulnerabilities. Also, oil use has important environmental impacts. Its extraction and transport can lead to spills that pollute land and water. Further, oil-based fuels, such as gasoline, generate sulphur dioxide and other air pollutants as well as large amounts of carbon dioxide that contribute to climate change.

U.S. oil use accounts for about 25% (2003) of the world’s oil consumption and about 40% (2003) of total U.S. energy use. The nation uses (2003) about 20.1 million barrels of oil per day (mb/d), of which about 13.2 mb/d is used for transportation, including about 5.0 mb/d for cars and 3.7 mb/d for light trucks (includes pickups, minivans, and sport utility vehicles).

Oil use in transportation can also be reduced through short-term conservation measures such as increased use of public transit, carpooling and ridesharing, and telecommuting; and through curtailment (e.g., driving less) and substitution of alternative fuels. Other measures can help reduce non-transportation oil uses. For example, home improvement measures such as insulation, energy-efficient windows, and weatherization measures can reduce the use of home heating oil.
Climate Change: Energy Efficiency’s Role

The Department of State, Foreign Operations, and Related Programs Appropriations Bill, 2006 (P.L. 109-102, H.R. 3057; Section 585(a)) provides $100 million for “energy conservation, energy efficiency, and clean energy” to reduce greenhouse gas emissions in developing countries.

DOE’s November 2003 report U.S. Climate Change Technology Program — Technology Options for the Near and Long Term compiles information from multiple federal agencies on more than 80 technologies. For these end-use and supply technologies, the report describes President Bush’s initiatives and R&D goals for advancing technology development, but it does not estimate emissions saving potentials, as some previous DOE reports on the topic had presented.

Energy efficiency is seen as a key means to reduce fossil fuel-induced carbon dioxide (CO2) emissions that may contribute to global climate change. Thus, recent debates over the U.S. role in the Kyoto Protocol and related international negotiations to curb global emissions of greenhouse gases tend to be reflected in deliberations over federal funding and incentives for energy efficiency.

In fulfilling requirements under the United Nations Framework Convention on Climate Change (UNFCCC), EPA issued the third U.S. climate report to the United Nations entitled Climate Action Report 2002. In it, the Bush Administration commits to reducing greenhouse gas intensity (emissions per unit of GDP) by 18% (4% more than under existing policies) over 10 years through a combination of voluntary, incentive-based, and existing mandatory measures focused on energy efficiency and other measures. This is projected to attain a 4.5% reduction from forecast emissions in 2012. The Administration has proposed this policy in place of the Kyoto Protocol, which it opposes due to concerns that it could raise energy prices and slow economic growth. Further, the Administration has stated its intent to support funding for energy efficiency and renewable energy programs at DOE and at the Global Environment Facility.

The 2001 White House Initial Review on Climate Change cites an existing array of energy efficiency and other programs that support goals of the UNFCCC and refers to the National Energy Policy (NEP) report’s provisions for CHP, CAFE, Energy Star, and other energy efficiency policies as part of the foundation for its strategy to curb greenhouse gas (GHG) emissions.

The Kyoto Protocol had called for the United States to cut GHG emissions to 7% below the 1990 level during the period from 2008 to 2012. At the Seventh Conference of Parties (COP-7) in 2001, the United States was accused of avoiding real efforts to reduce emissions, through energy efficiency and other means, in order to address the Kyoto Protocol. In February 2005, the Kyoto Protocol went into effect, without a U.S. commitment to an emissions reduction goal.

At COP-11 in December 2005, the parties focused on the post-2012 period and sat as the first “Meeting of the Parties to the Kyoto Protocol (MOP-1).” COP-11/MOP-1 adopted detailed rules for the operation of the Kyoto Protocol, including emissions trading, joint implementation, clean development mechanism, crediting of domestic sink activities, a
compliance regime, and a system for reporting and reviewing national emissions. Shortly before COP-11/MOP-1 convened, both leaders of the Senate Foreign Relations Committee introduced Res. 312, which calls for U.S. participation in “negotiations under the UNFCC” and in agreements that “establish mitigation commitments by all countries that are major emitters of greenhouse gases.” This resolution may reflect an increasing interest from Congress for stronger U.S. engagement in the multilateral climate effort.

DOE’s 2000 report *Scenarios for a Clean Energy Future* shows the potential for advanced energy efficiency and other measures to cut two-thirds of the projected U.S. carbon emissions growth by 2010 and to cut emissions to the 1990 level by 2020. Assuming no major future policy actions, the reference case scenario in the EIA’s January 2003 *Annual Energy Outlook 2006* projects 2010 emissions will be 1,731 MMTC, 27% more than that for 1990. DOE’s 1995 report *Energy Conservation Trends* shows that energy efficiency has reduced long-term rates of fossil energy use and thereby curbed emissions of CO2 significantly. (For details about the potential for energy efficiency to reduce CO2 emissions, see CRS Report RL30414, *Global Climate Change: The Role for Energy Efficiency.*

In September 2005, the California Air Resources Board approved final rules that would require car manufacturers to cut automobile carbon dioxide and other GHG emissions 22% by 2012. This could force automakers to increase fuel efficiency sharply. Although the rules take effect in 2006, new cars will not have to meet new standards until model year 2009. An industry court challenge is possible. Seven northeastern states have adopted other auto emission regulations that parallel those in California. In April 2005, the Canadian government signed a “voluntary” agreement with automakers to reduce GHG by 5.3 million tons, or 17%, by 2010.

Electric Industry Restructuring and Conservation

The debate over the federal role in restructuring includes questions about energy efficiency. The 2001 electricity problems in California raised the issue of whether a federal role is needed to encourage demand-side energy efficiency and load management measures. A June 2002 report (#49733) by the Lawrence Berkeley National Laboratory, *California Consumers Kept Lights on During Electricity Crisis by Conserving and Investing in Efficient Equipment*, found that conservation and efficiency measures reduced summer 2001 peak demand by 10%, increased system reliability, avoided some wholesale power purchases, and avoided $2 billion to $20 billion in potential losses from rolling blackouts. *Energy Efficiency Leadership in California*, an April 2003 report by the Natural Resources Defense Council and Silicon Valley Manufacturing Group, uses California Energy Commission data to project that additional efficiency measures could reduce electric demand by 5,900 megawatts (MW) and save $12 billion over the next 10 years.

Many states and electric utilities created demand-side management (DSM) programs to promote energy efficiency and other activities as a less costly alternative to new supply. DSM became a significant part of the nation’s energy efficiency effort. Utility DSM spending peaked in 1994 at $2.7 billion and DSM energy savings peaked in 1996 at 61 billion kilowatt-hours (which is equivalent to the output from 12 one-gigawatt powerplants).
After California issued its 1994 proposal for electric industry restructuring, many states and utilities reduced DSM efforts. By 1998, utility DSM spending had fallen to about $1.4 billion. In response, some states, such as California, include provisions for energy efficiency and conservation in their restructuring legislation. For example, California’s law (A.B. 1890, Article 7) placed a “public goods” charge on all electricity bills from 1998 through 2001 that provided $872 million for “cost effective” energy efficiency and conservation programs. Other states, such as Pennsylvania, have few if any provisions for energy efficiency. (For a discussion of broader electricity restructuring issues, see CRS Report RL32728, Electric Utility Regulatory Reform: Issues for the 109th Congress.)

LEGISLATION

Public Laws

P.L. 109-54 (H.R. 2361)
Department of the Interior, Environment, and Related Agencies Appropriations Bill, 2006. The conference bill includes $112.5 million for EPA’s Climate Protection Program (energy efficiency) — $93.5 million under the Office of Environmental Programs and Management (EPM) and $19.0 million under the Office of Science and Technology (S&T). Conference reported (H.Rept. 109-188) July 26, 2005. Signed into law August 2.

P.L. 109-58 (H.R. 6)
Energy Policy Act of 2005 (EPACT 2005). The enacted version (H.Rept. 109-190) authorizes or reauthorizes several energy efficiency and conservation programs. It also establishes several new commercial and consumer product efficiency standards, sets new goals for energy efficiency in federal facilities and fleets, broadens the Energy Star products program, expands programs for hydrogen fuel cell buses, and extends daylight savings. However, it does not include Senate-proposed provisions for oil conservation and a broader range of legislated equipment efficiency standards. Conference reported (H.Rept. 109-190) July 27, 2005. Signed into law August 8.

P.L. 109-59 (H.R. 3)
Transportation Equity Act. Sections related to energy efficiency and conservation include 1121, high occupancy vehicle (HOV) facilities; 1307, magnetic levitation transportation; 1807, nonmotorized transportation pilot program; 1808, additions to congestion mitigation and air quality (CMAQ); 1952, congestion relief; 1954, bicycle transportation and pedestrian walkways; 3005, metropolitan transportation planning; 3016 national research and technology programs; 3045, national fuel cell bus technology development program; 4149, office of intermodalism; 5301, intelligent transportation systems; 5502, congestion relief research initiative; 6001, transportation planning; and 9002, study of high speed rail. House bill introduced February 9, 2005; referred to Committee on Transportation and Infrastructure. Conference reported (H.Rept. 109-203) July 28, 2005. Signed into law August 10.

Note: Four other public laws make appropriations for energy efficiency programs. P.L. 109-97 (H.R. 2744) makes appropriations for grant and loan (§9006) programs at the Department of Agriculture; P.L. 109-102 (H.R. 3057, §585[a]) makes appropriations for the Department of State’s climate change programs in developing countries, including $100
million that “should be made available to directly promote and deploy energy conservation, energy efficiency, and renewable and clean energy technologies”; P.L. 109-103 (H.R. 2419) makes appropriations for the DOE energy efficiency (energy conservation R&D and grant) programs; and P.L. 109-108 (H.R. 2862, §618 and §619) directs several federal agencies to certify that telecommuting opportunities have increased over the previous year and several other agencies to certify that telecommuting opportunities are available to 100% of the eligible workforce. Failure to certify would cause agencies to risk forfeiting $5 million. More details about these laws and other bills are described in CRS Report RL32860, *Energy Efficiency and Renewable Energy Legislation in the 109th Congress*, by Fred Sissine.)

Legislation

S. 1932 (Gregg)/H.R. 4241 (Nussle)

(A more extensive list of more than 140 bills appears in CRS Report RL32860, *Energy Efficiency and Renewable Energy Legislation in the 109th Congress*, by Fred Sissine.)

CONGRESSIONAL HEARINGS, REPORTS, AND DOCUMENTS

FOR ADDITIONAL READING

——. *Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards.* 2001. 184

CRS Reports

Websites

Alliance to Save Energy. Many resources on energy efficiency. [http://www.ase.org/]

National Association of State Energy Offices. [http://www.naseo.org/]

U.S. Lawrence Berkeley Laboratory. Center for Building Science. [http://eetd.lbl.gov/]

Table 3. DOE Energy Efficiency Budget for FY2004-FY2006
(selected programs, $ millions)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROGEN TECH.</td>
<td>94.6</td>
<td>99.1</td>
<td>99.1</td>
<td>99.1</td>
<td>81.1</td>
<td>-13.5</td>
</tr>
<tr>
<td>FUEL CELL TECH.</td>
<td>74.9</td>
<td>83.6</td>
<td>83.6</td>
<td>83.6</td>
<td>76.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Fuel Processor</td>
<td>9.7</td>
<td>9.9</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Stack Component</td>
<td>32.5</td>
<td>34.0</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>VEHICLE TECH.</td>
<td>166.9</td>
<td>165.9</td>
<td>167.9</td>
<td>199.9</td>
<td>183.9</td>
<td>17.0</td>
</tr>
<tr>
<td>Hybrid and Electric</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Advanced Combustion</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Materials Technology</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Fuels Technology</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Technology Introduction</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>BUILDING TECH.</td>
<td>67.1</td>
<td>58.0</td>
<td>65.0</td>
<td>67.0</td>
<td>70.0</td>
<td>2.8</td>
</tr>
<tr>
<td>Res. & Commercial Bldgs</td>
<td>21.9</td>
<td>22.9</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Emerging Technologies</td>
<td>31.4</td>
<td>25.4</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>INDUSTRIAL TECH.</td>
<td>75.3</td>
<td>56.6</td>
<td>56.6</td>
<td>56.5</td>
<td>57.4</td>
<td>-17.9</td>
</tr>
<tr>
<td>Ind. of the Future, Spec</td>
<td>38.2</td>
<td>22.1</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Ind. of the Future, Cross</td>
<td>32.9</td>
<td>30.6</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>DISTRIB. ENERGY RES.*</td>
<td>60.6</td>
<td>56.6</td>
<td>56.6</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>FED. ENERGY MGMT</td>
<td>20.1</td>
<td>19.2</td>
<td>19.2</td>
<td>19.2</td>
<td>19.2</td>
<td>-0.9</td>
</tr>
<tr>
<td>WEATHER'N & INTERG.</td>
<td>326.5</td>
<td>310.1</td>
<td>321.1</td>
<td>325.1</td>
<td>320.1</td>
<td>-6.4</td>
</tr>
<tr>
<td>Weatherization Program</td>
<td>224.7</td>
<td>225.4</td>
<td>235.4</td>
<td>240.4</td>
<td>240.0</td>
<td>15.3</td>
</tr>
<tr>
<td>State Energy Grants</td>
<td>44.2</td>
<td>41.0</td>
<td>41.0</td>
<td>41.0</td>
<td>36.0</td>
<td>-8.2</td>
</tr>
<tr>
<td>State Energy Activities</td>
<td>2.3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>-1.8</td>
</tr>
<tr>
<td>Gateway Deployment</td>
<td>35.0</td>
<td>26.7</td>
<td>25.7</td>
<td>26.7</td>
<td>25.7</td>
<td>-9.3</td>
</tr>
<tr>
<td>Rebuild America</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>6.6</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Clean Cities</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>6.5</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Energy Star</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>5.8</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>Inventions</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>2.4</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>PROGRAM MGMT</td>
<td>110.0</td>
<td>111.0</td>
<td>111.0</td>
<td>153.0</td>
<td>113.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Prior Year Balances</td>
<td>-5.3</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
<td>——</td>
</tr>
<tr>
<td>EERE, TOTAL*</td>
<td>1,248.9</td>
<td>1,200.4</td>
<td>1,236.8</td>
<td>1,253.8</td>
<td>1,185.7</td>
<td>-63.2</td>
</tr>
<tr>
<td>EFFICIENCY R&D, SUB.#</td>
<td>478.9</td>
<td>463.1</td>
<td>474.5</td>
<td>506.1</td>
<td>468.5</td>
<td>-10.4</td>
</tr>
<tr>
<td>GRANTS, SUBTOTAL</td>
<td>268.9</td>
<td>266.4</td>
<td>276.4</td>
<td>281.4</td>
<td>276.0</td>
<td>7.1</td>
</tr>
<tr>
<td>EE EARMARKS, SUB.</td>
<td>34.0</td>
<td>——</td>
<td>23.2</td>
<td>34.5</td>
<td>85.7</td>
<td>51.7</td>
</tr>
</tbody>
</table>

*Funding for Distributed Energy was moved to the Office of Electricity Delivery and Energy Reliability.
#Efficiency R&D Subtotal includes Hydrogen, Fuel Cells, Vehicles, Buildings, and Industrial Technologies.